TP2A Prélever une quantité de matière

Dans un recueil de manipulations chimiques, on trouve un protocole expérimental permettant d'obtenir une « lampe à lave ». Pour la préparer, il faut prélever des quantités de matière.

Comment prélever une quantité de matière d'une espèce chimique ?

Document 1: La lampe à lave

- 1. Verser 0,072 mol de bicarbonate de sodium au fond d'un grand verre de 5cL
- 2. Ajouter doucement 4,7.10⁻² mol d'huile de colza. NE PAS AGITER.
- 3. Verser dans un second verre,5mL de vinaigre blanc et ajouter 6 gouttes de colorant alimentaire rouge. Agiter.
- 4. Verser quelques gouttes de la solution de vinaigre colorée au-dessus de l'huile
- 5. Laisser le vinaigre tomber au fond du verre.

Document 2: Matériel à votre disposition

- Béchersde 50mL et 25mL
- Vinaigre blanc
- Pipette compte-gouttes
- Balance
- Agitateur en verre

- Eprouvettes graduées de 50mL et 5mL
- Hydrogénocarbonate de sodium
- Colorant alimentaire rouge
- Sabot de pesée + spatule

Document 3 : Rappels de seconde-La mole, unité de quantité de matière

 Pour dénombrer les entités chimiques (atomes, molécules ou ions) contenus dans un échantillon de matière, les chimistes les regroupent par « paquets » appelés « moles ».

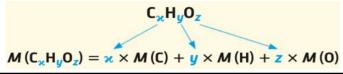
Une mole d'entités contient $6,02.10^{23}$ entités chimiques identiques. Ce nombre est appelé constante d'Avogadro et est noté $\mathcal{N}a:\mathcal{N}a=6,02.10^{23}$ mol⁻¹.

• La quantité de matière, notée n, d'entités chimiques est le nombre de moles de cette entité dans un échantillon de matière. Elle s'exprime en mole de symbole « mol »

- Voici la formule qui relie le nombre d'entité N, la quantité de matiere n (en mol) et le nombre d'Avogadro $\mathcal{N}a$

$$N = n \times \mathcal{N}a$$

Document 4: La masse molaire


La masse molaire d'une entité chimique (atome, molécule ou ion)est définie par la masse d'une mole de cette entité. On la note Mentité et s'exprime en q.mol⁻¹.

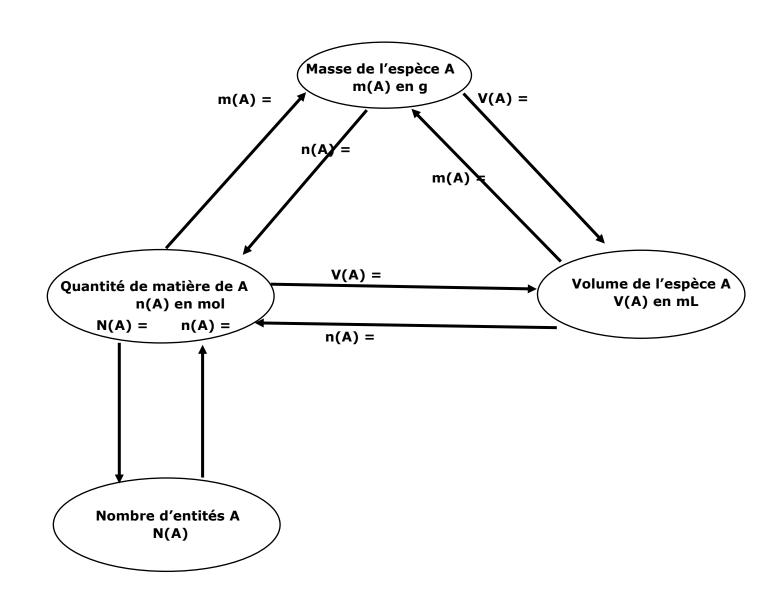
Les valeurs des masses molairesdes éléments chimiques (atomes ou ions monoatomiques) sont indiquées dans le tableau périodique des éléments.

$$M(ion) = M(atome)$$

La masse molaire d'une entité polyatomique correspond à la somme des masses molaires de chaque atome qui la compose.

_				-	_		_		,		
п	\sim	ıın	10	nt	_	•	\mathbf{n}	nη	né	96	•
u	··		ıc	IIL	_			vii	116	C 3	

- Tableau périodique des éléments
- Formule brute du bicarbonate de sodium : NaHCO3
- Formule brute de l'huile de colza : C₅₇H₁₀₄O₆
- Masse volumique de l'huile de colza : ρhuile = 0,92g.mL⁻¹
- Masse volumique de l'eau : ρeau = 1,0 g.mL⁻¹
- 1. Do4. Exprimer, à partir des masses molaires atomiques, les masses molairesdu bicarbonate de sodium et de l'huile de colza notée respectivement M_{bicarbonte de sodium} et M_{huile}. Calculer ces masses molaires.
- 2. Do3. La masse d'une molécule d'huile de colza est m_{entité}=1,47.10⁻²⁴kg. A partir de cette masse retrouver la valeur de la masse molaire de l'huile. Est-ce que la valeur est cohérente avec la question 1 ?
- 3. Do3. Déterminer le nombre d'entités de bicarbonate de sodium et d'huile dans chaque échantillon.


REA:

- 4. La masse volumique de l'huile est de 0,92g.mL⁻¹. Qu'est-ce que cela signifie ?Rappeler la relation existante entre la masse volumique d'une espèce chimiquenotée ρespèce, sa masse mespèceet son volume V_{espèce}.
- 5. Do3. Do4. Proposer une relation mathématique associant les grandeurs suivantes : la masse de l'espèce chimique notée m_{espèce}, sa quantité de matière n_{espèce}et sa masse molaire M_{espèce}. (Utilise les unités)
- 6. Réécrire le protocole expérimental permettant d'obtenir une lampe à lave en incluant le nom du matériel ainsi que les valeurs des grandeurs mesurables (des calculs sont nécessaires). Et completer le tableau suivant.

	Bicarbonate de sodium	l'huile de colza
Formule brute de la molécule		
Matériel pour prélever l'espèce chimique		
Masse m à prélever (pour les solides et liquide)		
Volume V) prélever (pour les liquides)		

$RF\Delta$		
KFA		
	•	

- 7. Réaliser le protocole expérimental
- 8. Proposer une explication au mouvement des gouttes de vinaigre blanc.
- 9. Compléter la carte mentale ci-dessous qui résume les relations existantes entre les différentes grandeurs étudiées dans cette activité.

A: acquis PA: Partiellement acquis NA: Non Acquis

A la fin de la séance je dois savoir :			NA
- Savoir ce qu'est une mole			
-Connaitre et savoir utiliser la relation entre n,N, ${\mathcal N}a$			
- Savoir définir et retrouver la masse molaire d'une molécule			
- Savoir calculer une quantité de matière à partir de la masse d'un échantillon			
- Savoir utiliser la masse volumique pour retrouver une masse ou une quantité de matière			