CHAPITRE I: L'atome et sa représentation

A la fin du chapitre je dois savoir :

Intitulé des objectifs	Où ?
Mots à savoir définir : atome, ion, molécule, noyau atomique, cortège électronique, proton, neutron, électron, numéro atomique, nombre de masse, espèce chimique, entité chimique.	Cours + activités
Г	
SAVOIR-FAIRE / COMPETENTCES :	
Connaitre les constituants d'un atome et leurs emplacements	TP1A Atome
Savoir ou est concentrée la masse d'un atome	TP1BReprésentation de l'atome + exercice
Calculer la masse d'un atome (et connaitre la formule)	TP1B Représentation de l'atome + exercice
Calculer la charge d'un atome	TP1B Représentation de l'atome + exercice
Savoir qu'un atome est électriquement neutre : son noyau est chargé	TP1A+ TP1B Atome +
positivement et son cortège électronique négativement	Représentation de l'atome + exercice
Etablir l'écriture conventionnelle d'un noyau atomique à partir de sa composition.	TP1B Représentation de l'atome + exercice
Etablir la composition d'un noyau atomique à partir de son écriture conventionnelle.	TP1B Représentation de l'atome + exercice
Citer l'ordre de grandeur de la valeur de la taille d'un atome	TP1B Représentation de l'atome + outils Maths+ exercice
Comparer la taille et la masse d'un atome à celle de son noyau	TP1B Représentation de l'atome + outils Maths+ exercice
Définir une espèce chimique comme une collection d'un nombre très élevé d'entités chimiques.	Cours
Utiliser le terme adapté parmi <i>molécule, atome, anion ou cation</i> pour qualifier une entité chimique à partir d'une formule chimique donnée.	Cours

A savoir avant de débuter le chapitre

Composition d'un atome

Atome, ion, molécule

Pour réviser : -Livre p – 49 à 65

-Exercices résolus 58-59

- composition d'un élément : 6-7 p60 / 20-21p62

masse, taille et charge d'un atome : 9p60 / 10p61 / 26p63
composition solide ionique : 17-18p61 / 23p62 / 30p64

- type d'élément : 11-12-14p61

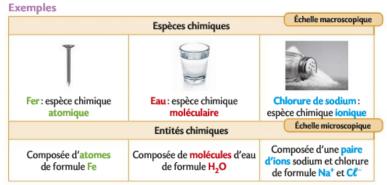
M.Prêtre Chapitre 1 : Atome 1/5

-Les exercices corrigés à la fin du livre pour s'entrainer

A flasher avec un téléphone

I/ Espèce chimique et entité chimique

A l'échelle microscopique, une espèce chimique est une collection d'un très grand nombre d'entités chimiques identiques.

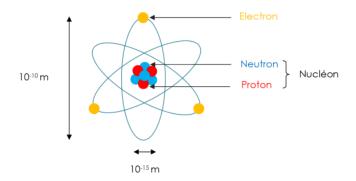

Exemple : L'espèce chimique « eau » est constitué de beaucoup de molécule H₂O.

Une entité chimique peut désigner un atome, une molécule (=assemblage d'atomes), un ion ou un assemblage d'ions (=les composés ioniques).

Différentes entités chimiques :

-Atomes: le fer Fe / le cuivre Cu / le carbone C -lons: c'est un atome qui a gagné ou perdu des électrons, il existe les cations chargés positivement (Cu²⁺, Fe³⁺) et les anions chargés négativement (Cl⁻, O²)

-Les molécules : qui sont un assemblage d'atomes (H_2O , CO_2 , H_2 , C_2H_6O)



II/Constitution d'un atome (révision du collège)

La matière qui nous entoure est **composée d'atomes.** Cet atome est lui-même constitué **d'un noyau atomique et d'un cortège électronique.**

Le noyau de l'atome est composé de **protons, chargé positivement, et de neutrons, sans charge (**les protons et les neutrons sont aussi appelés nucléons). Le cortège électronique est composé **d'électrons, chargé négativement**, en mouvement autour du noyau.

Un atome est électriquement neutre. Il y a donc autant de protons que d'électrons dans un atome.

Protons, neutrons et électrons sont des particules élémentaires aux caractéristiques suivantes : (les valeurs ne sont pas à connaître par cœur mais à savoir utiliser pour des calculs)

Particule	proton	neutron	électron
Masse m (kg)	$m_p = 1,67.10^{-27} \text{ kg}$	$m_n = 1,67.10^{-27} \text{ kg}$	m_{e^-} = 9,1.10 ⁻³¹ kg
Charge électrique q(C)	q(proton)= + 1,6.10 ⁻¹⁹ C = + e	q(neutron)= 0 C	q(electron)= - 1,6.10 ⁻¹⁹ C = - e
Emplacement	noyau	noyau	Cortège électronique

<u>Définition</u>: on appelle « q, la charge électrique » portée par une particule élémentaire. Elle se mesure en coulomb (de symbole C).

On note « e » la charge élémentaire : elle vaut e = 1,6.10⁻¹⁹ C.

On remarque qu'un proton et un neutron on la même masse, on dit que m_{proton}=m_{neutron}=m_{nucléon}= 1,67.10⁻²⁷ kg

III/ Représentation conventionnelle d'un élément chimique

Protons et neutrons sont aussi appelés « nucléons », car ils sont dans le noyau atomique.

L'écriture conventionnelle d'un noyau atomique indique la composition selon le symbole suivant :

X : symbole de l'élément chimique

Z : Le numéro atomique Z définit l'élément chimique étudié. C'est le nombre de proton dans l'atome

A : le nombre de nucléons est appelé « nombre de masse », c'est le nombre de nucléons dans l'atome (donc la somme des protons+neutrons)

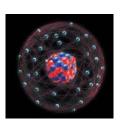
Le nombre de **neutrons N** contenus dans le noyau doit se calculer à l'aide de la relation : **Neutrons = A – Z**

IV/ Taille et masse d'un atome.

TAILLE DE L'ATOME :

L'atome et son noyau sont tous deux modélisés par une sphère.

L'ordre de grandeur du diamètre de l'atome est 10⁻¹⁰ m, celui du noyau est 10⁻¹⁵ m.


L'atome est 10⁵ (100 000) fois plus grand que son noyau.

La plus grande partie de l'atome est constituée de vide : on dit que la structure est « lacunaire ».

Petit point maths : -L'ordre de grandeur est la puissance de 10 la plus proche.

Exemple: $2x10^2$ m a pour ordre de grandeur 10^2 m 8x10⁶m a pour ordre de grandeur 10^7 m.

-Calcul d'un rapport entre 2 grandeurs : rapport = $\frac{Valeurlaplusgrande}{Valeurlapluspetite}$

Atome d'uranium

MASSE DE L'ATOME:

La masse d'un atome est la somme de la masse de toutes les particules qu'il contient :

 m_{atome} = (nombre de protons× $m_{proton+}$ nombre de neutrons × $m_{neutron}$) + nombre d'électrons× m_{e-}

Comme la masse des électrons et négligeable, la masse d'un atome se concentre dans son noyau, on peut alors écrire :

 $m_{atome} = m_{noyau} = nombre de protons \times m_{proton+} nombre de neutrons \times m_{neutron}$

Ou simplement matome = A x mnucléon

Exemple : Calculer la masse de l'atome suivant $^{14}{}_{6}\mathrm{C}$

Données : $m_{nucléon} = 1,67.10^{-27} \text{ kg}$

V/ PUISSANCE DE 10

Voici les puissances de 10 à connaitre en 2nd

Puissance de 10	Préfixe	Symbole
10 ¹²	téra	Т
10 ⁹	giga	G
10 ⁶	méga	М
10 ³	kilo	k
10 ²	hecto	h
10 ¹	déca	da

Puissance de 10	Préfixe	Symbole
10 ⁻¹	déci	d
10-2	centi	с
10 ⁻³	milli	m
10 ⁻⁶	micro	μ
10 ⁻⁹	nano	n

M.Prêtre Chapitre 1 : Atome 4/5

ORDRE DE GRANDEUR

-Un nombre est écrit en notation scientifique s'il est de la forme :

a×10 n avec 1 < a < 9 et n entier

Celle-ci permet de comparer plus aisément de grandeurs ayant même unité

Exemples: 123 m= 1,23×10² m

 $4586,7m = 4,5867 \times 10^3 \text{ m}$

 $0,086 \text{ m} = 8,6 \times 10^{-2} \text{ m}$

Décaler la virgule vers la gauche = augmenter la puissance

Décaler la virgule vers la droite = diminuer la puissance

-L'ordre de grandeur est la puissance de 10 la plus proche

Arrondir « a »: si a < 5, on l'arrondit à 1. L'ordre de grandeur est alors 10ⁿ;

si a \geq 5 on l'arrondit à 10. L'ordre de grandeur est alors 10 ⁿ⁺¹.

Exemples : -1,23×10² m ordre de grandeur => 10² m (car 1,23<5 donc on garde la puissance)

-6,57×10³ ordre de grandeur => 10⁴m (car 6,57> 5 donc on passe à la puissance supérieur)

 $-3,4x10^{-3}$ m ordre de grandeur => 10^{3} m (car 3,4<5 donc on garde la puissance)

-8,6×10⁻²m ordre de grandeur => 10⁻¹ m (car 8,6> 5 donc on passe à la puissance supérieur)

L'ordre de grandeur est très pratique ... quand on a pas de calculatrice.

VI/ Solide ionique

1. Passer de l'atome à l'ion

Un ion est un atome qui a perdu ou gagner un ou plusieurs électrons.

Lorsque l'atome de cuivre Cu perd 2 électrons il se transforme en Cu²⁺ qui est un cation (ion chargé positivement) Lorsque l'atome de Chlore Cl gagne 1 électrons il se transforme en Cl⁻ qui est un anion (ion chargé négativement)

Exemple : -Ecrire le cation formé par l'atome de magnésium Mg lorsqu'il perd 2 électrons et donner sa composition

Donnée: élément Magnésium: 24₁₂Mg

-Donner la composition de l'ion Cl-et la représentation symbolique de son noyau

Donnée : Élément Chlore 35₁₇Cl

M.Prêtre Chapitre 1 : Atome 5/5

2. Solide ionique

Un solide ionique est électriquement neutre, il doit donc contenir autant de charges positives que de charges négatives.

Le solide ionique CuCl₂ est composé du cation Cu²⁺ et de 2 anions Cl⁻ . Le solide est bien électriquement neutre

Exemple : Donner la composition de solide ionique Fe_2O_3 Donnée : l'oxygène forme un ion en gagnant 2 électrons.

M.Prêtre Chapitre 1 : Atome 6/5