TP1A

Découverte des ondes mécaniques et leurs propriétés

Activité 1 : Découverte des ondes

En classe de seconde, les ondes sonores et les ondes lumineuses ont été étudiées. Parmi ces deux exemples d'ondes, une seule est qualifiée de mécanique.

Document 1 : Expérience de la cloche à vide


Document 3: Ricochet

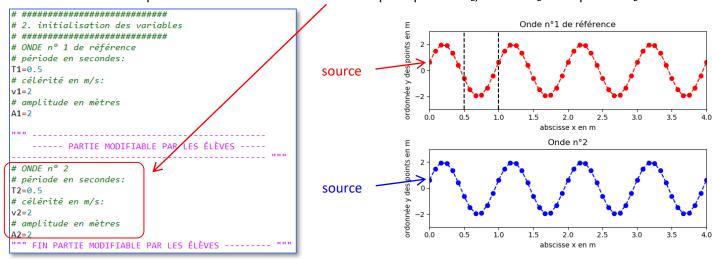
On fait des ricochets sur la surface plane et calme d'un étang. Cette photo montre l'évolution de la perturbation générée.

Document 4: Corde et ressort A Mouvement de l'onde Mouvement du point A A Figure 2 : Onde transversale

Document 5 : Flotteur d'un pécheur

- 1. Doc1. Qu'observe-t-on lorsque l'on actionne la pompe à vide pour le son dans l'enceinte? Le son est une onde mécanique, que pouvez-vous en déduire sur les propriétés de propagation d'une onde mécanique?
- 2. Doc3. Pourquoi peut-on dire que le caillou crée une perturbation à la surface de l'eau ? (Utiliser les termes repos et onde)
- 3. Pourquoi peut-on dire que la Ola doc2, ou les ondes du doc.4 représente une <u>onde progressive</u> ? Pourquoi dit-on que lors du passage d'une onde <u>la déformation est locale</u> et que le <u>système reprend sa forme initiale</u> <u>après le passage de l'onde</u> ?
- 4. Les vagues ne ramènent pas le bouchon sur la rive du doc 5. Pourquoi ? (Réfléchir par analogie avec la Ola). Est-ce qu'il a déplacement de matière lors du passage d'une onde ? Est-ce qu'il y a la propagation d'énergie lors du passage d'une onde ?
- 5. Construire la définition d'une onde mécanique progressive avec les termes suivants : propagation /d'une perturbation / Avec / Sans/ énergie / matière / dans un milieu matériel
- 6. En utilisant le doc 4 . Peut-on considérer la ola comme une onde transversale ou longitudinale ? Et les ondes du ricochet du doc 3 ?

Cloche à vide : https://www.youtube.com/watch?v=BC9Pod4cnpk&ab_channel=Exp%C3%A9riencesEPFL
Ola : https://www.youtube.com/watch?v=ef5SByXnCSo&ab_channel=Jessi-James


Activité 2 : Simulation de la propagation d'une onde mécanique à l'aide d'un programme Python

<u>But de l'activité</u>: Montrer qu'une onde mécanique progressive périodique possède une double périodicité et de voir, sur une animation programmée en python, l'influence de différents paramètres (période, célérité, amplitude...)

I Chargement du programme Python

1. Ouvrir l'éditeur Python (Edupython) ordinateur/échange/diffusion/physique chimie/edupython/edupython.exe et ouvrir le programme « 1ere_sinusoide_Animation.py » qui se trouve dans le dossier) ordinateur/échange/diffusion/physique chimie/1erS/Onde mécanique/Onde mecanique python

Ce programme simule la propagation de deux ondes le long d'une corde avec des noeuds : l'onde n°1 (de référence) et l'onde n°2 dont vous pourrez modifier certaines caractéristiques : période T₂, célérité v₂ et amplitude A₂.

- 2. Lancer l'animation en cliquant sur le bouton « play » vert et observer. (en cliquant sur l'écran une pause est effectuée)
- **3.** Y-a-t-il un déplacement global des points suivant l'axe horizontal après passage de l'onde ? Est-ce que cela est cohérent avec la définition d'une onde mécanique progressive ?

NE MODIFIER AUCUNE CARACTERISTIQUE DU PROGRAMME!

Il Mesure de la période de l'onde n°1

La période (notée T en s) est plus petite durée au bout de laquelle un point se retrouve dans le même état.

- **4.** A l'aide d'un chronomètre, proposer un protocole qui permettrai de mesurer la période T₁ de la source de l'onde n°1 <u>de façon précise</u> Appeler votre enseignant pour qu'il valide votre protocole
- 5. Mesurer la période du point de l'onde n°1 situé au niveau de l'abscisse x = 0,5 m.
- 6. Mesurer la période du point de l'onde n°1 situé au niveau de l'abscisse x = 3 m.
- 7. Comparer les 2 périodes mesurées et conclure.

III/Périodicité spatiale de l'onde n°1

La **période spatiale** (aussi appelée <u>période spatiale</u>) notée λ (en m)correspond à la plus petite distance ou deux points sont en phases (c'est à dire dans le même état).

- **8. Mettre en pause.** Que remarque-t-on pour le point situé à 1 mètre ? à 3 mètres ? On dit ici que les points sont <u>en</u> phases ? Justifier l'emploi de ce terme ?
- **9.** Que remarque-t-on pour le point situé à 0,5 mètre et celui à 1 mètre ? On dit ici que les points sont en opposition de phases ? Justifier l'emploi de ce terme ?
- 10. En mettant en pause l'animation (en cliquant sur la fenêtre), évaluer la longueur d'onde λ_1 de l'onde n°1.

IV Célérité de l'onde n°1

- 11. Par analyse dimensionnelle (en utilisant les unités), établir la relation générale entre T, λ et la célérité v de l'onde.
- **12.**A partir de vos mesures de T_1 et λ_1 , calculer la valeur de célérité v_1 de l'onde 1

V. Influence des caractéristiques d'une onde sur sa propagation

Nous allons modifier certaines caractéristiques de l'onde n°2 et voir leur influence sur la propagation de l 'onde n°2 (en comparant avec celle de l'onde n°1)

- **13.** Modifier la valeur de la célérité de l'onde n°2 : $v_2 = 4$ m.s⁻¹. Observer l'animation et repérer les grandeurs liées à l'onde qui ont été modifiées et celles qui ne l'ont pas été. (les grandeurs liées à une ondes sont λ , T, ν)
- **14.** Remettre $v_2 = 2$ m/s et modifier $T_2 = 0.25$ s. Observations?
- 15. Sans modifier T₂, calculer la célérité v₂ qui permettra aux ondes 1 et 2 d'avoir la même longueur d'onde.
- **16**. Modifier l'amplitude de l'onde n°2 : A2 = 4 et observer l'animation. Donner une définition de l'amplitude notée A. L'amplitude a-t-elle une influence sur la vitesse de propagation de l'onde ?

A: acquis PA: Partiellement acquis NA: Non Acquis

A la fin de la séance je dois savoir :	Α	PA	NA
			<u></u>
 Décrire, dans le cas d'une onde mécanique progressive, la propagation d'une perturbation mécanique d'un milieu dans l'espace et au cours du temps fonctionnement de la houle, ondes sismiques, ondes sonores, etc Connaitre la définition d'une onde mécanique progressif. Utiliser le logiciel latispro pour mesurer les caractéristiques d'une onde (période spatiale et temporelle) Exploiter la relation entre v, d et Δt pour déterminer par exemple la distance d'une source d'onde Distinguer et mesurer (de façon précise) la périodicité spatiale (λ) et la périodicité temporelle (T) d'une onde Connaitre la relation entre période T , longueur d'onde λ et célérité v d'une onde . Calculer une fréquence (f) à partir d'une période (T) Utiliser la programmation python pour visualiser des ondes Modifier un programme python modifier celui-ci pour changer les caractéristiques d'une onde (période T, vitesse) 			