TP1C

Rendement d'une bouilloire

<u>Introduction</u>: Dans la vie de tous les jours nous sommes entourés de convertisseurs. Aujourd'hui nous allons travailler sur la bouilloire : quelle conversion d'énergie effectue-t-elle ? Quel est son rendement ?

	que est un appareil qui permet orter rapidement sa températur
	généralement à l'ébullition.
À l'ébullition, le système	e de chauffage se coupe auton
tiquement.	
	une quantité d'énergie E (en jou nce P (en watt) et de la durée d'u).
ire patrick des pixels	$E = P \times \Delta t$
	Q reçue par l'eau, de masse $m_{ ext{ iny eau}}$ massique $c_{ ext{ iny eau}}$ pour faire passer st alors :
$Q = m_{ee}$	$c_{\rm eau} \times c_{\rm eau} \times (\theta_{\rm f} - \theta_{\rm i})$

	dement η d énergie céd		100001	ique est le	rapport
C'est u	ne valeur s	ans unité.			

	ide du wattmètre, mesurer la valeur maximum de ssance de la bouilloire P=W
	ide d'une éprouvette introduire 0,50L d'eau dans uilloire
	ide d'un thermomètre mesurer la température de θ _{initiale}
	ner la bouilloire et simultanément démarrer le nomètre
chror	fois que la bouilloire s'éteint arrêter le nomètre et relever le temps Δt et la température θ_{initiale}

1. Doc3. Prélever les 0,50L d'eau environs en utilisant le bon matériel. Puis, <u>exprimer</u> puis calculer la masse d'eau introduite.

 $\rho(eau) = 1.0 \text{ kg/L}$ m(eau) =kg /1

2. Doc 2 et 3. Réaliser la chaine énergétique de la bouilloire /1

3. Doc3. Réaliser le protocole du doc3. Noter les valeurs : /1

4. A l'aide de la question 3. Et du doc1. Exprimer et calculer l'énergie électrique E (en J) consommée par la bouilloire /1.5

5. A l'aide de la question 3. Et du doc1. Exprimer et calculer l'énergie thermique Q (en J) fournie par la bouilloire /1.5

6. Calculer le rendement η de la bouilloire. /1.5

7. Calculer les pertes de la bouilloire. /1.5

A la fin de la séance je dois savoir :	А	PA	NA
- Construire la chaine énergétique d'un convertisseur			
- Calculer une énergie fournie, consommée ou perdu d'un convertisseur			
- Calculer le rendement d'un convertisseur			