TP1B:

structure et propriètés de l'atome, écriture conventionnelle de l'atome

Doc.1: L'atome

La matière est composée d'atomes, eux même constitués de noyaux entourés d'un cortège électronique. Le noyau porte une charge électrique positive. Alors que le cortège électronique, constitué d'électrons, à une charge négative.

Dans le noyau on retrouve les nucléons (« nucléo » = noyaux) qui sont les protons (chargé positivement) et les neutrons (sans charge).

L'atome est électriquement neutre, cela veut dire qu'il y a autant de protons que d'électrons dans un atome, les protons et les électrons ont une charge électrique opposée.

Masse de l'atome : Toute la masse d'un atome est concentrée dans son noyau. On dit que la masse des électrons est négligeable.

<u>Taille de l'atome</u>:Si on prend l'exemple de l'hydrogène : Le diamètre de l'atome d'hydrogène est voisin de 1,6x10⁻¹nm et celui de son noyau est voisin de 2,5x10⁻¹² mm, le noyau est donc environs 100 000 fois plus petit que l'atome, on dit que l'atome a donc une structure lacunaire, il est essentiellement constitué de vide.

Masses et charges électriques des particules élémentaires

Particule	Proton	Neutron	Électron	Or remorque
Masse	m _p = 1,673 × 10 ⁻²⁷ kg	$m_{\rm p} = 1.675 \times 10^{-27} \rm kg$	m ₄ -= 9,109 × 10 ⁻³¹ kg	que mp 1 ma
Charge électrique	q _p = 1,602 × 10 ⁻¹⁷ C	q _n = 0 C	qe = -1,602 × 10 ⁻¹⁹ C	alor who = ww

L'unité d'une charge électrique est le coulomb de symbole C

Doc. 3: Représentation conventionnelle du noyau atomique

"Coulomb"

Le noyau d'un atome est représenté conventionnellement par l'écriture suivante :

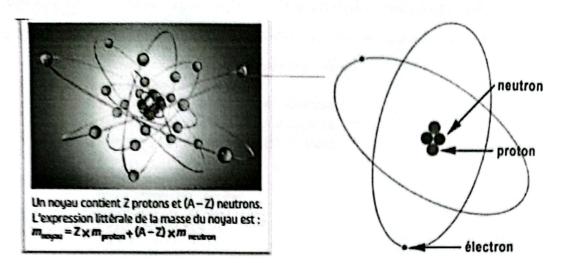
^A**X**

X est le symbole de l'élément chimique.

Z est le numéro atomique : c'est le nombre de protons qui constituent le noyau. Nombre de neutrons, N:

N = A - Z

A est le nombre de masse : c'est le nombre total de nucléons, c'est-à-dire le nombre de protons et de neutrons.


Z caractérise un élément chimique. L'élément chimique désigne toutes les entités qui ont le même numéro atomique.

Doc. 4: Charge électrique q (C)

- lacktriangle Une particule chargée porte une charge électrique, noté q. q s'exprime en coulombs (symbole C) et est multiple de la charge élémentaire e.
- Un proton porte une charge positive ; sa valeur est celle de la charge élémentaire e.
- Un neutron porte une charge nulle : il est électriquement neutre.
- ▶ Un électron porte une charge négative ; sa valeur est l'opposé de celle de la charge élémentaire, soit -e.
- La charge élémentaire est la plus petite charge électrique existante. Elle a pour valeur $e = 1,602 \times 10^{-10}$ C.

Doc. 5: Masse du noyau atomique:

Doc. 6: Atome d'hélium

Manipulation:-Allumer l'ordinateur. Ouvrir l'application « construire un atome ».

Lien: https://phet.colorado.edu/sims/html/build-an-atom/latest/build-an-atom_fr.html

- -Dans "Montrer" tout cocher; dans "modèle": cocher Orbites.
- -Ouvrir Bilan électrique et Nombre de masse (avec les petits +)
- -Ajouter aléatoirement des protons, électrons et neutrons (aux bons endroits) Observer.
- -Construire l'atome d'hélium stable. Appeler votre enseignant et le recopier sur votre feuille.

QR Code vers l'animation

QUESTIONS:

Structure de l'atome :

 Doc1. Dans un tableau, donner les noms des différentes particules citée dans le document 1, leur charge électrique et leur localisation dans l'atome.

Particule	Charge	Localisation	
proton	pos, he	Moyalk	
neutos	mul	noyou	
electron	nesohl	where electorique	

Masse de l'atome :

 A l'aide du doc.6 indiquer le nombre de proton, de neutron, d'électrons dans l'atome d'hélium. Indiquer le nombre de nucléons en vous aidant du document 1.

Dos 1 Helion il ya 2 protiss donc lelections et 2 neutrons

3. A l'aide des doc.2 et 6, exprimer puis calculer la valeur, en kg, de la masse du noyau atomique de l'hélium.

m moyau = 2x mp + 2x mm = 2x 1,673x10 27 + 2x 1,675x10 = 6,696x10 kg le moyou d'Helium pase 6,696x10 14 kg

4. Al'aide des doc.2 et 6, exprimer puis calculer la valeur, en kg, de la masse de electrons dons l'Alelium

melechnikal = 2x me = 2x 9, 69 x10-31 = 1,822 x10-30 kg

des electrons dos l'Helium pese 1,822 x1030 kg

2/3

Comparer ces deux masses. Conclure en utilisant la phrase surligner dans le document 1.

Ecriture conventionnelle du noyau atomique : Vous pouvez vous aider de l'application « symbole »

- A l'aide du doc.3, donner l'écriture conventionnelle des noyaux :
 - a. d'hydrogène composé d'1 proton.
 - b. de carbone composé de 6 protons et de 7 neutrons.
 - c. d'oxygène composé de 8 protons et de 10 neutrons.
 - d. d'uranium composé de 92 protons et 143 neutrons.

a) 14 b) 14C

5) m naja = 6,696 x10-22 kg 2 10-26 kg Melechen = 1,822 x10-30 kg = 10-30 kg

 $noppost = \frac{m noyau}{m electron} = \frac{10^{-26}}{10^{-30}} = 10^{4} = 10000$

Donc le moyau est 10000 fais plus bard que les elections! de mosse des elections est neyligeable!

^{10.} A l'aide des valeurs du doc.1, convertir en m en utilisant les puissances de 10 les valeurs du diametre de l'atome et du noyau d'hydrogène