I/ Exercices en classe:

Données • Les masses molaires atomiques sont données dans le tableau périodique. 🕟 Rabat VI

• Volume molaire des gaz : $V_{\rm m}$ = 24,5 L·mol $^{-1}$ dans les conditions des exercices.

- Les cachets de vitamine C contiennent soit de l'acide ascorbique C₆H₈O₆, soit de l'ascorbate de sodium composé d'ions ascorbate C₆H₇O₆ et d'ions sodium Na⁺.
- a. Calculer la masse molaire de l'acide ascorbique.
- **b.** Calculer la masse molaire des ions ascorbate et des ions sodium.
- 42 Le propane C₃H_{8(α)} est un gaz.
- **a.** Quel est le volume de 1.5×10^{-1} mol de ce gaz ?
- b. Calculer la masse de cet échantillon.

52 De la masse à la quantité de matière

Recopier et compléter le tableau ci-dessous.

Nom	Fer	lon ammonium	Chlorure de calcium
Formule	Fe	NH ₄ ⁺	CaCl ₂
Masse molaire			
Masse			3,0 kg
Quantité de matière	$3.0 \times 10^{-2} \mathrm{mol}$	$1.4 \times 10^{-1} \text{mol}$	

55 Cyclohexane

Le cyclohexane $C_6H_{12(\ell)}$ est un solvant. Sa masse volumique est $\rho = 0.78$ g·mL⁻¹.

- a. Calculer la masse *m* de 100 mL de cyclohexane.
- **b.** Calculer la masse molaire *M* du cyclohexane.
- **c.** Calculer la quantité de matière *n* contenue dans 100 mL de cyclohexane.

60 Gaz pour barbecue

Les barbecues à gaz utilisent des bouteilles qui peuvent contenir deux liquides : le propane $\mathrm{C_3H_{8(\ell)}}$ ou le butane

 $C_4H_{10(\ell)}$.

- Calculer la masse molaire du butane.
- 2. Une bouteille contient 13 kg de butane. Quelle quantité de matière de butane contient-elle?
- Lorsque la bouteille est ouverte, le liquide se vaporise.
- a. Calculer le volume de gaz obtenu.
- b. Serait-il différent si le gaz était du propane ? Justifier.

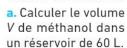
78 Synthèse du paracétamol

Le paracétamol C₈H₉NO₂ est un médicament antipyrétique (anti-fièvre) et antalgique (anti-douleur), synthétisé en 1878. C'est le médicament le plus prescrit en France.

On réalise au laboratoire la synthèse du paracétamol à partir de 25 mmol de 4-aminophénol $C_6H_7NO_{(s)}$ et de 37 mmol d'anhydride éthanoïque $C_4H_6O_{3(\ell)}$, de masse volumique ρ = 1,08 g·mL⁻¹.

- a. Calculer les masses des deux réactifs et le volume d'anhydride éthanoïque à prélever.
- **b.** (A l'oral) Expliquer à un camarade comment prélever 25 mmol d'aminophénol et 37 mmol d'anhydride éthanoique.

79 Boisson énergisante


La taurine $\mathrm{C_2H_7NO_3S}$ est présente dans toutes les boissons « énergisantes ». Son rôle est de prolonger l'effet de la caféine $\mathrm{C_8H_{10}N_4O_2}$.

Nom	Masse dans une canette de 250 mL	Dose journalière maximale
Taurine	1 000 mg	$2.4 \times 10^{-2} \text{mol}$
Caféine	80 mg	$2.1 \times 10^{-3} \text{ mol}$

■ Combien de canettes peut-on boire par jour sans dépasser les doses journalières maximales ?

56 Le méthanol : un carburant

Le méthanol CH,O, de masse volumique $\rho = 0.79 \text{ g} \cdot \text{mL}^{-1}$, peut remplacer l'éthanol dans la composition de carburants. Par exemple, le carburant M85 contient 85 % en volume de méthanol.

- b. En déduire la masse *m* correspondante.
- c. Calculer la quantité de matière n de méthanol contenue dans le réservoir.

Acide éthanoïque

On dispose au laboratoire d'acide éthanoïque C2H4O2 à 90 % en volume. On donne ci-dessous l'étiquette du flacon.

ACIDE ÉTHANOÏQUE (≥ 90 %)

Danger

H226 - Liquide et vapeurs inflammables

H314 - Provoque des brûlures de la peau et des lésions oculaires graves

La masse volumique de l'acide éthanoïque pur est $\rho = 1.05 \text{ g} \cdot \text{mL}^{-1}$.

On souhaite préparer une solution d'acide éthanoïque de concentration $c = 2,00 \times 10^{-1} \text{ mol} \cdot \text{L}^{-1}$.

- 1. Déterminer la quantité de matière d'acide éthanoïque nécessaire à la préparation de 500 mL de cette solution.
- 2. a. Quelle quantité de matière d'acide éthanoïque pur est contenue dans un litre du mélange à 90 %?
- b. En déduire le volume de ce mélange qu'il faut prélever pour préparer la solution voulue.
- 3. Rédiger le protocole expérimental de cette préparation, en précisant les précautions à prendre.

% se dit « pourcent » et signifie « sur cent ».

Ainsi, 70 % est égal à $\frac{70}{100}$ = 0,70.

L'acier, un mélange solide

L'acier est un mélange solide de fer Fe_(s) et de carbone $C_{(s)}$. On considère une poutre d'acier d'une tonne contenant 1,2 % de carbone en masse.

- a. Calculer la masse de carbone dans la poutre.
- b. En déduire la quantité de matière de carbone dans la poutre.
- c. Calculer la quantité de matière de fer contenue dans cette poutre.