
38 Ondes le long d'un ressort

Deux photos de la propagation d'une onde mécanique le long d'un ressort ont été prises à 0,50 s d'écart.

- a. Justifier que cette onde est bien une onde mécanique progressive.
- b. Déterminer la célérité de cette onde.

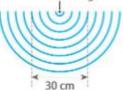
50n dans un métal et dans l'air

Deux capteurs électroacoustiques sensibles au vibrations sont reliés à une interface d'acquisition Elles sont distantes de d = 38 cm et posées sur um barre métallique. Un coup sec donné sur la barre donne lieu à l'enregistrement de deux salves :

- a. Indiquer à quel signal correspond le capteur le plus proche du coup.
- b. Mesurer le retard de l'onde entre les deux micros
- c. En déduire la célérité de l'onde dans la barre,
- d. Quel aurait été le retard de cette onde sonore dans l'air pour deux micros distants de 38 cm aussi? Pourquoi cette valeur est-elle différente de celle trou à la question b?

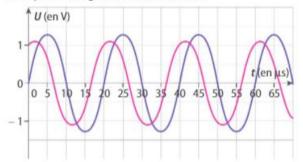
46 Corde vibrante

Une corde est soumise à une vibration sinusoïdale de fréquence f = 3.5 Hz. Deux points A et B de cette corde sont en phase et distants de 3,8 cm.


- a. Déterminer la période de cette vibration.
- b. Sa longueur d'onde est-elle forcément 3,8 cm ?
- c. On estime la célérité comprise entre 6,5 et 6,9 cm·s-1. En déduire la valeur de la longueur d'onde et une valeur plus précise de la célérité.

Des ronds dans l'eau

Un robinet laisse tomber périodiquement des gouttes d'eau dans l'évier plein d'eau. Les gouttes créent une onde progressive périodique circulaire. Sur une durée $\Delta t = 10 \text{ s, il chute 21 gouttes.}$


- a. Déterminer la période T, puis Point de chute des gouttes la fréquence f de cette onde.
- b. La figure ci-contre schématise les crêtes de l'onde générée. En déduire la longueur d'onde λ, puis la célérité v de cette onde.

Des ultrasons dans un gaz

Un émetteur délivre un signal ultrasonore sinusoïdal. On enregistre les signaux suivants à l'aide de deux récepteurs alignés avec l'émetteur.

Données « Célérité du son dans des gaz, en m·s-1 :

Air	Dihydrogène	Dioxyde de carbone	Hélium
340	1 270	260	930

- 1. Déterminer graphiquement la période T du son émis et en déduire sa fréquence f.
- Si cette expérience avait lieu dans l'air, que vaudrait la longueur d'onde de cette onde ?
- 3. On place les deux récepteurs en phase, puis on déplace un récepteur dans l'alignement jusqu'à obtenir de nouveau les deux signaux en phase. Ce récepteur a été déplacé de 2,5 cm.
- a. En déduire la longueur d'onde, puis la célérité des ondes. Quel gaz constitue le milieu de propagation?
- b. Si le milieu avait été l'air, sans changer l'échelle des abscisses, combien de périodes aurait-on vues ?
- c. Comment améliorer la méthode de détermination de la longueur d'onde?