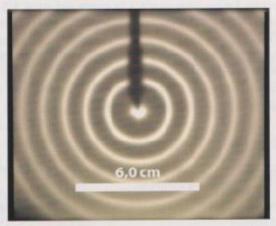

- Une onde sonore sinusoïdale de fréquence f = 880 Hz se propage dans l'air.
- a. Quelle est la période du son émis ?
- b. Quelle est sa longueur d'onde?
- c. Deux points alignés avec la source dans la direction de propagation de l'onde sont distants de 0,92 m. Sont-ils en phase ?
- Le graphe suivant donne la représentation d'un signal u(t).



- Déterminer la période, puis la fréquence de ce signal.
- 35 Un milieu est parcouru par une onde sonore de célérité $v = 500 \text{ m·s}^{-1}$. La surpression dans ce milieu à un instant donné est représentée par le graphique suivant.

- a. Quelles sont les caractéristiques de cette onde ?
- b. Déterminer la longueur d'onde, la période et la fréquence de l'onde.

La photo ci-dessous représente la surface d'une cuve à ondes à un instant donné. La fréquence d'excitation est f = 20 Hz.

- a. Déterminer la longueur d'onde, puis la célérité de l'onde.
- b. On double f. La longueur d'onde mesurée est à présent $\lambda' = 6.8$ cm.

La célérité des ondes a-t-elle changé ?

Fréquence et longueur d'onde

Recopier et compléter le tableau suivant pour les quatre ondes périodiques données.

	Onde 1	Onde 2	Onde 3	Onde 4
Fréquence	25 Hz	1,8 kHz		
Période			75 ms	4,5 s
Célérité	340 m·s 1			25 km-h 1
Longueur d'onde		12 mm	1,5 cm	