Fiche 1

Puissance de 10 et conversion

I/ Les puissances 10 en physique chimie : exemple appliqué aux longueurs

Préfixe	Abréviation	Facteur multiplicatif
péta	Р	10 ¹⁵ (= 1 000 000 000 000 000)
tera	Т	10 ¹² (= 1 000 000 000 000)
giga	G	10° (= 1 000 000 000)
méga	M	10° (= 1 000 000)
kilo	k	10 ³ (= 1 000)
hecto	h	10 ² (= 100)
déca	da	10 ¹ (= 10)
		10° (= 1)
déci	d	10 ⁻¹ (= 0,1)
centi	С	10 ⁻² (= 0,01)
milli	m	10 ⁻³ (= 0,001)
micro	μ	10 ⁻⁶ (= 0,000001)
nano	n	10 ⁻⁹ (= 0,00000001)
pico	p	10 ⁻¹² (= 0,00000000001)
femto	f	10 ⁻¹⁵ (= 0,00000000000000)

II/ Ecriture scientifique et ordre de grandeur

-Décaler la virgule :

-Un nombre est écrit en notation scientifique s'il est de la forme :

 $a \times 10^{n}$ avec 1 < a < 9 et n entier

Celle-ci permet de comparer plus aisément de grandeurs ayant même unité

Exemples:

si a ≥ 5 on l'arrondit à 10.	L'ordre de grandeur est alors 10 ⁿ⁺¹ .	
Exemples :		
III/ Utiliser les puissances de 10 et co	onvertir_	
Généralement on veut convertir des Exemples à convertir en m :	grandeurs exprimées dans de grandes unités ou de petites un	ités en mètres :
-12,3 μm =		
-0,0312 GHz =		
Application : Convertir en m en écrit	ure scientifique et donner les ordres de grandeur	
	Ecriture scientifique et conversion en m	Ordre de grandeur
10,3 Gm		
8,2 μm		
0,089.10 ⁴ Mm		
32,4 nm		
0,087 cm		
400.10 ² hm		
12,5.10 ⁻² mm		
896,89.10 ³ km		

-L'ordre de grandeur est la puissance de 10 la plus proche

Arrondir a : si a < 5, on l'arrondit à 1. L'ordre de grandeur est alors 10^n ;

Application : Convertir vers l'unité et donner

20000 g	kg
3,20 g	mg
230.10 ⁴ N	kN
50.10 ⁻⁴ L	mL
10,7 x10 ⁻¹¹ m	nm
0,075.10 ⁴ L	hL

Fiche 2

Chiffres significatifs

I/ Reconnaitre le nombre de chiffre significatif

Le nombre de chiffres significatifs d'une grandeur représente le nombre total de chiffres constituant un nombre. Exemple : 20210 ou 2,0210.10 ⁴ présente 5 Chiffres significatifs.

Attention: - Le "0" au milieu ou à la fin d'un nombre est un chiffre significatif.

Exemple : 2,04 =>

- Le « 0 » à la fin d'un nombre est un chiffre significatif.

Exemple : 20,0mL =>

- Le "0" au début d'un nombre **n'est pas un chiffre significatif**, il faut toujours écrire en écriture scientifique avant de parler de chiffres significatifs.

Exemple: 0,0370 =

Application: Donner le nombre de chiffre significatif dans chaque cas

a) 67,1

c) 6,30 x 10⁵

e) 12,50

b) 0,072

d) 3,0054

Application : Exprimer avec le bon nombre de chiffres significatifs (chiffre entre parenthèse) les nombres suivants :

7,2458 (3)

3,145 9 (3)

6,001(3)

6,345 (2)

43,715 (4)

59 393 (3)

<u>Pourquoi les chiffres significatifs ?</u> Pour un physicien 742 (Volt, Watt, radian ou Joule ou ...) n'est pas égal à 742,0 et encore moins à 742,000...... Oui, cela semble contredire les mathématiques, ou du moins ce que vous en avez retenu en général. La différence repose bien sûr sur le nombre de chiffres significatifs utilisé dans les deux cas (3 pour le 742,4 pour 742,0 et 6 pour 742,000) En physique le dernier chiffre significatif correspond au chiffre sur lequel on aura une « incertitude » .

Quand on dit que la puissance vaut 742 W, cela veut dire que la valeur réelle de puissance peut être 742,2W ou 742,3W, or ce n'est pas le cas si on dit que la valeur est 742,0 W

II/ Calculs et chiffres significatifs

1) Multiplication et division :

Le résultat d'une multiplication ou d'une division a autant de chiffres significatifs qu'en a la mesure la moins précise utilisée dans le calcul.

Application : Ecrire les résultats de ces opérations avec le bon nombre de chiffres significatifs

Calculs	Résultat	Calculs	Résultat
12,57 x 2,03		45,75x0,51	
4,0 × 2,0		$\frac{105}{12}$	
$20x10^2 \times 2,00$		45,75x8,4 103	
42,5		105,45x75.10 ⁻²	
$0.040 \times 10^2 \times 3.674$		78,4.10 ⁴ x758,4 .10 ⁻²	
$\frac{4,00}{2,5}$		0,014x75,310 ⁻³	
$\frac{12x10^2x5,574}{2,00}$		$\frac{0,00478.10^{-2} \times 147}{1,6994.10^{-6}}$	
		$\frac{1,71.10^{-19} \times 45}{1,69.10^{-6}}$	
		$\frac{1,7011.10^{-19} \times 45,5.10^{-4}}{1,699.10^3}$	

Isoler une variable est indispensable en physique chimie. Voici une méthode en vidéo qui permet pas à pas de résoudre et isoler des variables

Règles Mathématiques :

Applications: Isoler les variables suivantes

Formule			
$v = \frac{d}{\Delta t}$	d=	$\Delta t =$	
$n = \frac{m}{M}$	m=	M=	
$\frac{D}{d} = \frac{H}{h}$	H=	h=	d=
$C_1 \times V_1 = C_2 \times V_2$	C ₁ =	V ₂ =	
$(H \times D) + d = h$	H=	d=	
$(H \times D) = (d \times h)$	H=	d=	
$\frac{(H+h)}{h} = \frac{D}{d}$	H=	d=	h=
$y = -\frac{1}{2} \cdot g \cdot t^2 + H$	H=	t²=	t=
$v = g.t - v_0.\sin(\alpha)$	g=	V ₀ =	
$Ec = \frac{1}{2}mv^2$	M=	V=	
$\gamma = \sqrt{\frac{1}{1 - \frac{v^2}{c^2}}}$	v=		
$Q = mc(\theta_2 - \theta_1)$	m=	O ₂ =	

Epp= mgz	Z		
$\Delta E = \frac{h.c}{\lambda}$	C=	λ =	
$\frac{1}{\overline{OA'}} - \frac{1}{\overline{OA}} = \frac{1}{f'}$ $mg(z_2 - z_1) = \frac{1}{2} mv^2$	OA'=	f'	
$mg(z_2-z_1)=\frac{1}{2}mv^2$	Z ₂ =	V ²	V=